Skip to main content

Real Numbers Ex 1.1 Solutions


PSEB Solutions for Class 10 Maths Chapter 1 Real Numbers Ex 1.1




     Q 1.Use Euclid’s division algorithm to find the HCF of:

    (i) 135 and 225  
    (ii) 196 and 38220
    (iii) 867 and 255.

    Solution:
    (i) By Euclid’s division Algorithm



    Use Euclid’s division algorithm to find the HCF of 1


    Step 1.
    Since 225 > 135,
    we apply the division Lemma to 225 and 135,
    we get 225 = 135 × 1 + 90

    Step 2.
    Since the remainder 90 ≠ 0,
    we apply the division Lemma to 135 and 90,
    we get 135 = 90 × 1 + 45


    Step 3. Since the remainder 45 ≠ 0,
    we apply the division Lemma to 90 and 45,
    we get 90 = 45 × 2 + 0


    Since the remainder has now become zero, so we stop procedure.
     divisor in the step 3 is 45
     HCF of 90 and 45 is 45
    Hence, HCF of 135 and 225 is 45

    (ii) To find HCF of 196 and 38220

    Step 1.
    Since 38220 > 196,
    we apply the division Lemma to 196 and 38220,
    we get 38220 = 196 × 195 + 0
    Since the remainder has now become zero so we stop the procedure.
    divisor in the step is 196
    HCF of 38220 and 196 is 196.
    Hence, HCF of 38220 and 196 is 196.


    Use Euclid’s division algorithm to find the HCF of 2






    psebstudy24hr.blogspot.com

    (iii) To find HCF of 867 and 255

    Step 1.
    Since 867 > 255,
    we apply the division Lemma to 867 and 255,
    we get 867 = 255 × 3 + 102
    Step 2.
    Since remainder 102 ≠ 0,
    we apply the divison Lemma to 255 and 102,
    we get 255 = 102 × 2 + 51
    Step 3.
    Since remainder 51 ≠ 0,
    we apply the division Lemma to 51 and 102, by taking 102 as division,
    we get 102 = 51 × 2 + 0
    Since the remainder has now become zero, so we stop the procedure.
    divisor in step 3 is 51.
    HCF of 102 and 51 is 51.
    Hence, HCF of 867 and 255 is 51.

    To find HCF of 867 and 255








    Q 2.Show that any positive odd integer is of the form 6q + 1 or 6q + 3 or 6q + 5, where q is some integer.

    Solution:
    Let a be any positive odd integer, we apply the division algorithm with a and b = 6.
    Since 0 ≤ r < 6, the possible remainders are 0, 1, 2, 3, 4 and 5. i.e., a can be 6q or 6q + 1, or 6q + 2, or 6q + 3, or 6q + 4, or 6q + 5 where q is quotient. However, since a is odd ∵ a cannot be equal to 6q, 6q + 2, 6q + 4 ∵ all are divisible by 2. Therefore, any odd integer is of the form 6q + 1 or 6q + 3 or 6q + 5.


    psebstudy24hr.blogspot.com

    Q 3. An army contingent of 616 members is to march behind an army band of 32 members in a parade. The two groups are to march in the same number of columns. What is the maximum number of columns in which they can march? 

    Solution:
    Total number of members in army = 616 and 32 (A band of two groups)
    Since two groups are to march in same number of columns and we are to find out the maximum number of columns.
    Maximum Number of columns = HCF of 616 and 32
    Step 1.
    Since 616 > 32, we apply the division Lemma to 616 and 32, to get
    616 = 32 × 19 + 8

    HCF of 616 and 32





    Step 2.
    Since the remainder 8 ≠ 0, we apply the division Lemma to 32 and 8, to get
    32 = 8 × 4 + 0.
    Since the remainder has now become zero
    ∵ divisor in the step is 8
    ∵ HCF of 616 and 32 is 8.
    Hence, maximum number of columns in which they can march is 8.





    Q 4. Use Euclid’s division lemma to show that the square of any positive integer is either of the form 3m or 3m + 1 for some integer m.

    psebstudy24hr.blogspot.com

    [Hint. Let x be any positive integer then it is of the form 3q, 3q + 1 or 3q + 2. Now square each of these and show that they can be rewritten in the form 3m or 3m + L]

    Solution:
    Let x be any positive integer then it is of the form 3q, 3q + 1 or 3q + 2.
    If x = 3 q
    Squaring both sides,
    (x)2 = (3q)2
    – 9q2 = 3 (3q2) = 3m
    where m = 3 q2
    where m is also an integer
    Hence x2 = 3m ………… (1)
    If x = 3q + 1
    Squaring both sides,
    x2 = (3q + 1)2
    x2 = 9q2 + 1 + 2 × 3q × 1
    x2 = 3 (3 q2 + 2q) + 1
    x2 = 3m + 1 …. (2)
    where m = 3q2 + 2q where m is also an integer
    From (1) and (2),
    x2 = 3m, 3m + 1
    Hence, square of any positive integer is either of the form 3m or 3m + 1 for some integer m.


    Q 5. Use Euclid’s division lemma to show that the cube of any positive integer is of the form 9m, 9m + 1 or 9m + 8.


    psebstudy24hr.blogspot.com

    Solution:
    Let x be any positive integer and b = 3
    x = 3 q + r where q is quotient and r is remainder
    If 0 ≤ r < 3
    If r = 0 then x = 3 q
    If r = 1 then x = 3q + 1
    If r = 2 then x = 3q + 2
    x is of the form 3q or 3q + 1 or 3q + 2
    If x = 3q
    Cubing both sides,
    x3 = (3q)3
    x3 = 27q3 = 9 (3q3) = 9m
    where m = 3q3 and is an integer .
    x3 = 9m ……….. (1)
    If x = 3q + 1 cubing both sides,
    x3 = (3 q +1)3
    x3 = 27q3 + 27q2 + 9q + 1
    = 9 (3q3 + 3q2 + q) + 1
    = 9m + 1
    where m = 3q3 + 3q2 + q and is an integer
    Again x3 = 9m + 1 …………. (2)
    If x = 3q +2
    Cubing both sides,
    (x)3 = (3q + 2)2
    = 27 q3 + 54 q2 + 36q + 8
    x3 = 9 (3 q3 + 6q2 + 4q) + 8
    x3 = 9m + 8 ………. (3)
    where m = 3 q3 + 6q2 + 4q
    Again x3 = 9m + 8
    From (1) (2), & (3), we find that
    x3 can be of the form 9m, 9m + 1, 9m + 8.
    Hence, x3 of any positive integer can be of he form 9m, 9m + 1 or 9m + 8

    psebstudy24hr.blogspot.com


    More reed :-
     PSEB Solutions for Class 10 Maths Chapter 1 Real Numbers Ex 1.2

    Comments

    Popular Posts

    PSEB 12th Class Punjabi Book Solutions Chapter 3 | ਪੰਜਾਬ ਦੇ ਰਸਮ ਰਿਵਾਜ

    Chapter 3 ਲੇਖਕ ਬਾਰੇ ਗੁਲਜ਼ਾਰ ਸਿੰਘ ਸੰਧੂ (1935) ਮਾਤਾ ਜੀ ਦਾ ਨਾਂ : ਸ੍ਰੀਮਤੀ ਗੁਰਚਰਨ ਕੌਰ ਪਿਤਾ ਜੀ ਦਾ ਨਾਂ : ਸ. ਹਰੀ ਸਿੰਘ ਜਨਮ-ਮਿਤੀ : 27 ਫ਼ਰਵਰੀ, 1935 ਜਨਮ-ਸਥਾਨ : ਪਿੰਡ ਕੋਟਲਾ ਬਡਲਾ, ਜ਼ਿਲ੍ਹਾ ਲੁਧਿਆਣਾ ਵਿੱਦਿਆ-ਪ੍ਰਾਪਤੀ : ਐੱਮ.ਏ. (ਅੰਗਰੇਜ਼ੀ) ਕੰਮ-ਕਿੱਤਾ : ਆਪ ਵੱਖ-ਵੱਖ ਮਹਿਕਮਿਆਂ ਵਿੱਚ ਅਧਿਕਾਰੀ ਪਦਾਂ ’ਤੇ ਰਹੇ। ਇਸ ਤੋਂ ਬਿਨਾਂ ਆਪ ਪੰਜਾਬੀ ਯੂਨੀਵਰਸਿਟੀ, ਪਟਿਆਲਾ ਵਿੱਚ ਪੱਤਰਕਾਰੀ ਵਿਭਾਗ ਵਿੱਚ ਪ੍ਰੋਫ਼ੈਸਰ ਵੀ ਰਹੇ ਹਨ।ਉਸ ਤੋਂ ਪਹਿਲਾਂ ਆਪ ‘ਪੰਜਾਬੀ ਟ੍ਰਿਬਿਊਨ' ਦੇ ਸੰਪਾਦਕ ਰਹੇ। ਫਿਰ ‘ਦੇਸ਼-ਸੇਵਕ’ ਦੈਨਿਕ ਅਖ਼ਬਾਰ ਦੇ ਸੰਪਾਦਕ ਵੀ ਰਹੇ। ਆਪ ਕਹਾਣੀ-ਲੇਖਕ ਵੀ ਹਨ।‘ਹੁਸਨ ਦੇ ਹਾਣੀ’, ‘ਇੱਕ ਸਾਂਝ ਪੁਰਾਣੀ’ ਅਤੇ ‘ਸੋਨੇ ਦੀ ਇੱਟ’ ਆਪ ਦੇ ਮੁੱਖ ਕਹਾਣੀ- ਸੰਗ੍ਰਹਿ ਹਨ। ਇਸ ਪਾਠ-ਪੁਸਤਕ ਵਿੱਚ ਸ਼ਾਮਲ ਆਪ ਦੇ ਲੇਖ ‘ਪੰਜਾਬ ਦੇ ਰਸਮ-ਰਿਵਾਜ' ਵਿੱਚ ਆਪ ਨੇ ਜੀਵਨ-ਨਾਟਕ ਦੀਆਂ ਮੁੱਖ ਝਾਕੀਆਂ ਜਨਮ, ਵਿਆਹ ਤੇ ਮਰਨ ਨਾਲ ਸੰਬੰਧਿਤ ਪੰਜਾਬ ਦੇ ਮੁੱਖ ਰਸਮ- ਰਿਵਾਜਾਂ ਬਾਰੇ ਦੱਸਿਆ ਹੈ।PSEB 12th Class Punjabi Book Solutions Chapter 3 | ਪੰਜਾਬ ਦੇ ਰਸਮ ਰਿਵਾਜ PSEB 12th Class Punjabi Book Solutions Chapter 3 | ਪੰਜਾਬ ਦੇ ਰਸਮ ਰਿਵਾਜ Table Of Contents Long Type Questions Answer ਪ੍ਰਸ਼ਨ 1. 'ਪੰਜਾਬ ਦੇ ਰਸਮ-ਰਿਵਾਜ' ਪਾਠ ਵਿਚ ਪੰਜਾਬ...